NAVDAT Technology Review & Modulation Demo

Wednesday, Oct 2 9:00 am EST, 15:00 CET

Agenda

- Introduction
- NAVDAT Review
- Digital & NAVDAT Modulation
- Introducing NAV Series
 - *New* NAVDAT/NAVTEX MF Transmitters
 - New NAVDAT/NAVTEX Modulator
- NAVDAT Modulation
 - Simulations
 - Modulation Demo
- Questions

John Whyte Head of Marketing & Product Strategy Nautel

Hermann ZENSEN Sales Manager Europe NAUTEL

Gary Galbraith Sales Manager Navigation NAUTEL

KENTA Technologies & NAUTEL: Shared passion for maritime communications

Nautel HQ, Halifax, Canada Nautel Maine, Bangor, US Kenta Technologies, France 20,000 Deployments Five Decades

NAVDAT

2 Minute Overview

The promise of NAVDAT: Better data and content

The way forward now, and in line with the strategic implementation plan on enavigation*, is to introduce **digital communications**.

The gap-analysis of e-navigation identified the need to present information in **graphical format**.

* See MSC.1/Circ.1595

Understanding NAVDAT

• NAVDAT (Navigational Data)

 modern digital broadcasting system designed to transmit navigational and safety information to ships.

• Development:

• Developed as a successor to the traditional NAVTEX system, catering to the evolving digital needs in maritime communication.

• Technology:

 Utilizes advanced digital radio broadcasting technology, to ensure rapid dissemination of maritime safety information (MSI).

Possible content:

 navigation safety; •security; •piracy; •Urgent notice to mariners; •lce and lceberg; •Search and rescue; •weather messages; •currents and tides; messages from pilotage or port authorities; maritime traffic service file transfer; AIS information

Advantages of NAVDAT

- Enhanced Range & Reliability:
 - Offers greater transmission range and reliability compared to NAVTEX.

• Higher Data Capacity:

• Capable of transmitting a larger volume of data, allowing for more comprehensive safety messages.

• Multimedia Capability:

- Supports various data formats, including text, images, and potentially video, enhancing the clarity and understanding of safety messages.
- Flexibility:
 - Adaptable to various frequency bands and can be integrated with existing maritime communication systems.

NAVTEX - NAVDAT

NAVTEX NAVDAT relationship

NAVDAT Superior Content (higher power, bandwidth, data)

Typical Spectra: NAVTEX and NAVDAT

300 Hz NAVTEX

10 kHz NAVDAT

NAVTEX Simple Signal vs NAVDAT Complex Digital

NAVTEX vs NAVDAT Bandwidth Requirements

Significant implications for transmission chain:

Transmitter, Antenna Tunning Unit, Antenna

Digital Modulation - Principles

Sine Signal in time and frequency

4 QAM in IQ in a perfect transmission channel

4 QAM in IQ in a disturbed transmission channel

nautelnau

MER- Modulation Error Rate

Ratio of ideal vector compared to error vector in the IQ diagram expressed in dB

Low, Medium, High Data Rate Modes

nautelnav

NAVDAT Transmitters Must be Sized for Peak Power

- Size transmitter for varying power envelope up to 10 dB (10x) conservative
 - Carriers with random phase and amplitude add constructively and destructively
 - Peak to average power reduction algorithms will be optimized in the future

nai itelnai/

• NAVTEX is a single carrier system: Average Envelope Power == Peak Envelope Power

PAPR and MER

• PAPR – Peak Average Power Ratio

- Typical value: 10dB reduction of the PAPR leads to higher average power and better coverage
- PAPR can be configured in the modulator

MER- Modulation Error Rate

• Ratio of ideal vector compared to error vector in the IQ diagram expressed in dB

• Trade off PAPR and MER

• A reduced PAPR also leads to a reduced MER

International Telecommunication Union

Recommendation ITU-R M.2010-2 (02/2023)

Characteristics of a digital system, referred to as navigational data for broadcasting maritime safety and security related information from shore-to-ship in the 500 kHz band

M Series

Mobile, radiodetermination, amateur and related satellite services

ITU

MF NAVDAT Modulation

OFDM NAVDAT Parameter Values 1

Propagation mode	<i>T</i> " (ms)	1 / Tu (Hz)	Td (ms)	$T_s = T_u + T_d$ (ms)	Ns	Tf (ms)
A: surface wave	24	41.666	2.66	26.66	15	400
B: surface wave + sky wave	21.33	46.875	5.33	26.66	15	400

The purpose of the guard interval is to introduce immunity to propagation delays, echoes and reflections.

- T_u : duration of the useful part of an OFDM symbol
- $1/T_u$: carrier spacing
 - T_d : duration of the guard interval

- *T_s*: duration of an OFDM symbol
- N_s : the number of symbols per frame
- *T_f*: duration of the transmission frame.

Transmission frame

- Duration: 400 ms
- Starts with a synchronization symbol
- 15 OFDM symbols in one frame

OFDM NAVDAT Parameter Values 2

Relationship between channel bandwidth and OFDM sub-carrier numbers

	Case	1	2	3	4
Propagation mode	Channel bandwidth	1 kHz	3 kHz	5 kHz	10 kHz
A: surface wave	Number of subcarriers	23	69	115	229
	Number of subcarriers	K -11 to 11	K -34 to 34	K -57 to 57	K -114 to 114
B: surface wave + sky wave	Number of subcarriers	19	61	103	207
	Number of subcarriers	K -9 to 9	K-30 to 30	K-51 to 51	K -103 to 103

NAVDAT Input Streams

- MIS: Modulation Information Stream
 - channel bandwidth (1, 3, 5 or 10 kHz)
 - modulation for transmission information stream and data stream (4, 16 or 64-QAM)
 - always 4-QAM
- TIS: Transmission Information Stream
 - error coding for data stream (Mode A or B)
 - identifier of the transmitter
 - Time
 - 4 or 16-QAM
- DS: Data Stream
 - Navdat Message Files
 - 4,16 or 64-QAM

NAVDAT Modulator Diagram

Pilots

- Used for estimation of the channel impulse response and frequency in the receiver
- BPSK/2 QAM modulated
- Gain: 2

Channel Coding

- Transmission channels are not perfect: They are noisy and subject to perturbations
- Idea: Add bits in advance for error correction (FEC-Forward Error Correction)
- Less errors but also less useful data rate (due to the bits needed for protection)
- Code Rate = useful data rate/total data rate
- NAVDAT uses LDPC Low Density Parity Codes with

2 code rates: 0.5 et 0.75

ITU-R M.2010-2 Bit rates

TABLE 24

LDPC parameters of data stream for mode A

Bandwidth (kHz)	Number of subcarriers	Number of pilots	Number of data subcarriers	Modulation	TIS and MIS	Information bits	Channel coding	Information rate (kbits)
10	228*14	38*14	190*14	4-QAM	100	2560*2	(2560,5120)	6.36
10	228*14	38*14	190*14	4-QAM	100	2560*2	(3840,5120)	9.56
10	228*14	38*14	190*14	16-QAM	100	2560*4	(2560,5120)	12.72
10	228*14	38*14	190*14	16-QAM	100	2560*4	(3840,5120)	19.12
10	228*14	38*14	190*14	64-QAM	100	2560*6	(2560,5120)	19.08
10	228*14	38*14	190*14	64-QAM	100	2560*6	(3840,5120)	28.68
5	114*14	271	1325	4-QAM	100	1224*2	(1224,2448)	3.02
5	114*14	271	1325	4-QAM	100	1224*2	(1836,2448)	4.55
5	114*14	271	1325	16-QAM	100	1224*4	(1224,2448)	6.04
5	114*14	271	1325	16-QAM	100	1224*4	(1836,2448)	9.10
5	114*14	271	1325	64-QAM	100	1224*6	(1224,2448)	9.06
5	114*14	271	1325	64-QAM	100	1224*6	(1836,2448)	13.65
3	68*14	159	793	4-QAM	100	692*2	(692,1384)	1.69
3	68*14	159	793	4-QAM	100	692*2	(1038,1384)	2.555
3	68*14	159	793	16-QAM	100	692*4	(692,1384)	3.38
3	68*14	159	793	16-QAM	100	692*4	(1038,1384)	5.11
3	68*14	159	793	64-QAM	100	692*6	(692,1384)	5.07
3	68*14	159	793	64-QAM	100	692*6	(1038,1384)	7.665
-1	22*14	4*14	252	4-QAM	100	152*2	(152,304)	0.34
1	22*14	4*14	252	4-QAM	100	152*2	(228,304)	0.53
1	22*14	4*14	252	16-QAM	100	152*4	(152,304)	0.68
-1	22*14	4*14	252	16-QAM	100	152*4	(228,304)	1.06
1	22*14	4*14	252	64-QAM	100	152*6	(152,304)	1.095
1	22*14	4*14	252	64-QAM	100	152*6	(228,304)	1.59

Flexible Configurations

What TX Power Level do you Need?

Example: 220 NM (407 km) with 10 kHz Bandwidth

QAM	Data Rate	10 min data block	Weather Charts in 10 min	Average Power	Est Transmitter Size Peak Envelope Power
4 QAM	6-10 kbps	450 - 750 kB	2 - 3	0.7 kW	3.5 kW
16 QAM	12-19 kbps	900 -1425 kB	4 - 7	1.6 kW	10.1 kW
64 QAM	19-29 kbps	1425 -2175 kB	7 - 10	6.4 kW	50.8 kW

- More data requires more power
- Less bandwidth requires lower transmitter power
- Limited by atmospheric and ship-board noise (ITU-M.2443)

NAUTEL MF NAVDAT Solution

NEW KENTA NAVDAT Modulator

- Leverages Nautel and Kenta Decades Long Digital Modulation Expertise
- Supports all QAM modes
 - (MIS: 4 QAM, TIS:4 and QAM, DS: 4,16 and 64 QAM)
- Supports 1,3,5,10 kHz bandwidth
 - (LDPC matrices for 1,3 and 5kHz still to be defined in the standard)
- Supports mode A and B for MF
- LDPC Channel Coding
- DCP over IP inputs for MIS, TIS and DS streams
- HTTP and SNMP interfaces
- Meets ITU Standard R-REC-M.2010

Block Diagram KENTA NAVDAT Modulator

nautelnav

NAV25 QUICK SPECS

Frequency Range

NAVDAT 500 kHz (NAVDAT) 490 kHz and 518 kHz (NAVTEX)

Weight

261 kg (573 lbs)

Dimensions

184.2 cm H x 58.7 cm W x 86.4 cm D (72.5" H x 23.1" W x 34" D)

RF output power:

25 kW Peak Power, Ideal for NAVDAT >3 kW Average Power

Voltage

208 Vac or 380 Vac nominal, 3-phase, 50/60 Hz

RF output connection

7/8" EIA or 1-5/8" EIA, at top of transmitter

RF power modules (2) each with:

- Digital optimized linear design
- Integrated RF amplifier/modulator
- Microcontroller for protection and monitoring
- Short circuit protection
- Hot pluggable

Control and monitoring

- Local LCD Display
- Module level monitoring

Efficiency 86%

* Specifications subject to change

RF Amplifier / Modulator Module

1.8 MHz Direct Digital Modulation

RF Amplifier / Modulator Module

- No adjustments no pots
- Broad-banded entire MF band
- Hot pluggable
- Heavy gold connectors both sides
- Heat sink: 2.5 X required size
- High Efficiency Silicon Carbide modulator diodes
- Balanced RS422 modulator and RF drive.

Lightning/Transient/AC Protection

- ~50 nS Active VSWR Shutdown
- Series Capacitor/High Pass Stage
- Carbon Adjustable Ball Gap
- Static Discharge Choke
- Calibrated Fast Spark Gap (Pressurized Tritium)
- •Transient Attenuator Capacitors on AC Transformer Secondary (Common Mode)
- AC Surges Corrected by Phase Controlled B+ Rectifiers (Differential Mode)

Cooling

- 2 Ball Bearing DC Fans per RF module arranged in hot pluggable trays.
- •Typical fan life is over 9 years.
- Fan operation and speed is monitored by the controller.
- In a NAV25 kW transmitter, less than 1kW of heat is produced
- Air is drawn in from the rear, through a disposable paper air filter.

NAV Series Summary

- Proven, efficient, modular.
- Advanced digital
- Linear amplification
- High peak power, ideal for NAVDAT
- NAVTEX and NAVDAT capable

nai Itelnai/

Digital

Simulations & NAVDAT Modulator Spectrum Demonstration

Constellation MIS 4QAM, TIS 4QAM, DS 4QAM,

I Power

IQ Simulation

Frequency-Time OFDM FRAME

Constellation MIS 4QAM, TIS 4QAM, DS 16QAM,

Constellation MIS 4QAM, TIS 4QAM, DS 64QAM,

Constellation MIS 4QAM, TIS 16QAM, DS 64QAM,

Video with measurements of the real RF signal at the NAVDAT Modulator output

Keynight Spectrum Analyzer - Sweet SA	State and South of L	a 20 a) TO		03:55:03PM Oct 01, 2024
Center Freq 500.000 kHz	PNO: Wide 🗭 IFGain:Auto	Trig: Free Run #Atten: 10 dB	Avg Type: Log-Pwr Avg[Held>10/10	TRACE 02 4 TVPE A STRACT
10 aBidly Ref -20.00 dBm				
50.0 40.0				
02.0 /TL0 10.0				
Center 500.00 kHz Res BW 20 Hz		BW 20 Hz	S	Span 20.00 kHz weep (FFT) ~91.93 ms (1001 pts)
Trace V Daniel Reno				
(8) 20 5311				

🚾 Keysight Spectrum Analyzer - Swept SA				
X/ RF 50.Ω AC	SENSE:INT SOURCE OFF	ALIGNAUTO		03:52:58 PM Oct 01, 2024
Center Freq 500.000 kHz	PNO: Wide 🖵 IFGain:Auto	Trig: Free Run #Atten: 10 dB	Avg Type: Log-Pwr Avg Hold:>10/10	TRACE 1 2 4 TYPE A WWWWWW DET S N N N N N
10 dB/div Ref -20 00 dBm				
Log				
40.0				
50.0				
60.0				
80.0				
90.0				
100				
110				
Center 500.00 kHz		The second		Span 20.00 kHz
Res BW 20 Hz	V	BW 20 Hz	Swee	p (FFT) ~91.93 ms (1001 pts)
frace D				
Start				
(s) (c) - (c) - (c				
15.7472				
ASG	STATUS I AC coupled: Accy unspec'd < 10MHz			
Navdat Modulation Parameters				
Navdat Modulator > Navdat Modulation Parameters				-

Take aways

- NAVDAT Modulation
 - Uses Digital Modulation (COFDM)
 - Channel Coding based on LDPC
 - Useful data rates vary from 0.34 to 26.64 kbit/s depending on
 - Bandwidth (1,3,5,10 kHz)
 - Code Rate (0.5 or 0.75)
 - Mode A or B (Guard Interval)
 - 4,16 or 16 QAM Modulation
 - 3 streams: MIS, TIS, DS + Pilots
- Nautel can provide a complete solution including modulator and transmitter

NAVTEX/NAVDAT Coastal Station

What's next?

- Full Transmission chain demonstrations
- Implementation of the NAVDAT modes as they become approved
 - 10 kHz mode demonstrated today
 - 5, 3, and 1 kHz modes:
 - exact LDPC channel coding is being finalized by standards body.
- Receiver development
- Transmitter and Modulator Availability:
 - 2025 for NAVTEX support
 - 2025 for NAVDAT trials and testing

